Ordenação de tempo EM MEC. GRACELI GENERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
G* = = [ ] ω , , .=
MEC. GRACELI GENERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
G* = = [ ] ω , , .=
Na teoria quântica de campos a ordenação de tempo é útil para tirar produto de operadores. Esta operação é designada por .[1] Para dois operadores A (x) e B (y), que dependem em locais de espaço-tempo x e y nós definimos:
- / G* = = [ ] ω , , .=
Aqui and designam as coordenadas-tempo dos pontos x e y.[2]
De forma explícita temos
- / G* = = [ ] ω , , .=
onde representa a função de passo Heaviside e o depende se os operadores em natureza são Bósonicos ou Férmionicos. Se bosônico, então o sinal de é sempre escolhido, se fermiônico então, o sinal vai depender do número de interligação necessárias para atingir o operador de ordem temporal adequada.[3]
Uma vez que os operadores dependem de sua localização no espaço-tempo (ou seja, não apenas no tempo), esta operação em ordenação de tempo só é coordenada independente se os operadores do tipo espacial [nota 1] em pontos separados comutam.[4] Note que a ordenação tempo é em geral escrita com o argumento de tempo aumentando da direita para a esquerda. Em geral, para o produto de n operadores de campo A1(t1), …, An(tn) o produto do tempo ordenado dos operadores são definidos da seguinte forma:
/ G* = = [ ] ω , , .= nde a soma é executada em todo p's e sobre o grupo simétrico[5] [nota 2] n graus de permutações e
Matriz de dispersão
A matriz de dispersão [nota 3](ou matriz de espalhamento[6]) de em teoria quântica de campos é um exemplo de um produto de tempo ordenado. A matriz de dispersão transformando o estado em t =−∞ para um estado em t = +∞, pode também ser considerada como uma espécie de "holonomia[7]", análoga à linha de Wilson. Obtemos uma expressão ordenada no tempo devido ao seguinte motivo:
Começamos com esta fórmula simples para o exponencial
- / G* = = [ ] ω , , .=
Agora, considere a evolução discretizada do operador
- / G* = = [ ] ω , , .=
onde é o operador de evolução ao longo de um intervalo de tempo infinitesimal. Os termos de ordem superiores podem ser negligenciados no limite . O operador é definido por
- / G* = = [ ] ω , , .=
Note-se que os operadores de evolução ao longo dos intervalos de tempo "passado" é exibido no lado direito do produto. Nós vemos que a fórmula é análoga à identidade acima satisfeita pelo exponencial, e podemos escrever
- / G* = = [ ] ω , , .=
A única sutileza que tivemos que incluir foi o operador de ordenação de tempo porque os fatores no produto que definem S acima foram tempo-ordenados, também (e os operadores não comutam, em geral) e o operador garante que este ordenação será preservada.
Comentários
Postar um comentário